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1. Introduction

One of the most powerful tools for studying isomorphism classes of geometric objects is the
theory of invariants. In particular, invariants give a very nice way of telling when two objects are
not isomorphic: we find an invariant that takes different values on the two objects. Of course, the
effectiveness of this technique relies on our ability to find invariants that can actually distinguish
between different objects. In the world of knots and links, the best invariant constructed by the
mid-’80s was the HOMFLY polynomial, which give the Conway and Jones polynomials as special
cases.

The story of geometric invariants arising in physical contexts is a deep one that touches much
of mathematical physics. In classical Maxwell theory, for example, the space of all gauge inequiv-
alent flat vector potentials is precisely the first deRham cohomology, and Chern classes are more
sophisticated versions of this. These invariants are connected to classical (non-quantum) physi-
cal phenomena; one might ask what kinds of interesting geometric invariants arise from quantum
physics. It turns out that knot polynomials kept popping up in a wide array 1+1 dimensional
quantum phenomena of interest to theoretical physicists in the late ’80s.

The interesting question about both the math and physics of polynomial link invariants is why,
despite the fact that links are defined as embeddings of objects into three-dimensional space, the
two-dimensional story appears to be much more important. In the mathematics, the link polyno-
mials are defined by giving their values on projections of knots onto the plane via skein relations
and then showing that the computation is invariant under the choice of projection and link diagram
isotopy. On the physics side, the question is why the link invariants kept appearing in 2-dimensional
phenomena. It’s completely natural to think of a link as simply the closed paths of several particles
in 3-dimensional space; the appearance of link invariants in two-dimensional physics should be more
surprising.

This is where superman (aka Ed Witten) comes in. In his 1989 paper Quantum Field Theory
and the Jones Polynomial, he brought a powerful organizing principle into both the physics and
mathematics of link invariants and answered the question alluded to above. In his paper, he
studies a topological quantum field theory (TQFT) on 3-manifolds. The connection between two-
and three-dimensional pictures arises naturally in the context of TQFTs: we will see that a TQFT
assigns a vector space to two-manifolds and linear transformations on vector spaces to bordisms
between 2-manifolds. It is this property, together with the behavior of TQFTs under gluing of
bordisms, that will give rise to the skein relations for the Jones polynomial.

In this talk, we outline the ideas of Witten’s paper. The story will proceed as follows. First, we
will do a crash course on links and the HOMFLY polynomial. Next, we’ll introduce TQFTs and
show how they naturally give rise to invariants of both links and 3-manifolds. This is where the
first hint of skein relations will appear. Finally, we’ll sketch the construction of Witten’s Chern-
Simons TQFT; if we have time, we’ll be able to see the Jones polynomial explicitly pop out of his
framework.
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2. Crash Course in Links and the Jones Polynomial

Definition 2.1. A link is an embedding of a disjoint union of circles into a 3-manifold M , generally
R3 or S3. �

Definition 2.2. A link isotopy between two links L and L′ is a homotopy of homeomorphisms h
of the ambient space M of the links such that h(0, ·) is the identity, and h(1, L) = L′. This is an
equivalence relation on links. �

We are interested only in classifying links up to link isotopy. This is a hard, and central, problem
in knot theory.

Definition 2.3. A link diagram is the plane projection of a link with crossings (only two-fold
crossings are allowed) indicated. �

A link diagram of a link contains all the information of the link itself, up to link isotopy.

Example 2.1. Link diagrams for the trefoil knot and the Hopf link are shown in figures 2 and
2. �

Figure 1. The trefoil knot

Figure 2. The Hopf link

The Jones polynomial and its relatives are computed from link diagrams. These polynomials can
be recursively determined from their value on the unknot via a skein relation on the polynomials
for Conway triples of links, two concepts which we now define.

Definition 2.4. A triple of oriented links (L+, L−, L0) is a Conway triple if they can be represented
by link diagrams D+, D−, D0 which coincide outside a disk in R2 and which are respectively isotopic
to X+, X−, X0, as shown in figure 3. �

The existence and uniqueness of the HOMFLY polynomial, which is a generalization of the Jones
polynomial, is guaranteed by the following

Theorem 2.1. There exists a unique map L 7→ PL from the set of all oriented links in R3 to the
ring Z[x, x−1, y, y−1] such that

• If L and L′ are isotopic, then PL = PL′.
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Figure 3. Conway triples

• PL = 1 when L is the unknot.
• Whenever (L+, L−, L0) is a Conway triple,

(1) xPL+ − x−1PL− = yPL0 �

The polynomial whose existence is guaranteed by the above theorem is called the HOMFLY
polynomial and equation 1 is called a skein relation. The Jones polynomial and the Conway
polynomial are defined as special cases of the HOMFLY polynomial:

Definition 2.5. The Jones polynomial VL(t) and Conway polynomial ∇L(z) of a link L are defined
to be

∇L(z) = PL(1, z), VL(t) = PL(t−1, t1/2 − t−1/2). �

The Jones polynomial and the Conway polynomial are polynomials satisfying the conditions of
the theorem but with skein relations

∇L+ −∇L− = z∇L0(2)

t−1VL+ − tVL− =
(
t1/2 − t−1/2

)
VL0 . �(3)

It is not hard to see that the skein relation determines PL for an arbitrary link; given a link L,
one can obtain a trivial link after changing a finite number of crossings. The skein relation, in turn,
determines the value of PL for trivial links in terms of the unknot polynomial. That this process
unambiguously determines the polynomial is a much harder proof; we note only that this part of
the proof is much more algebraic, whereas the first half is topological.

Example 2.2. Let On denote the n-component trivial link, H the Hopf link, and T the trefoil
knot.

(4) POn =

(
x− x−1

y

)n−1
, PH = (x−1 − x−3)y−1 + x−1y, PT = 2x−2 − x−4 + x−2y2.

The first polynomial is derived by considering the Conway triple (O,O,O2) and using induction,
while the second two polynomials follow from the Conway triples (H,O2, O) and (T,O,H). �

The HOMFLY polynomial can distinguish between knots and their mirror images. In particular,
the trefoil knot and its mirror image have different HOMFLY polynomials. In general, if L̃ is the
mirror image of L, then PL̃(x, y) = PL(x−1,−y).

As a concluding remark, we note that link diagrams aren’t a profoundly two-dimensional thing:
the crossings capture the relevant 3-dimensional phenomenon. The Chern-Simons TQFT will gen-
erate the skein relations for us, but with a slightly more manifest 3-dimensional flavor.
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3. Topological Quantum Field Theory

Definition 3.1. Cobn is the category whose objects are oriented, compact smooth (n−1)-manifolds.
A morphism M → N is given by a diffeomorphism class of n-manifolds B along with a diffeomor-
phism ∂B ' M̄

∐
N , where M̄ is the manifold M but with its orientation reversed. B is called a

bordismM → N . Composition of morphisms is given by gluing: if ∂B ' M̄
∐
N and ∂B′ ' N̄

∐
P ,

we can form the composite bordism B′′ = B
∐

N B′ by identifying N ⊂ ∂B with N̄ ⊂ ∂B′. The
identity bordism M →M is given by M × [0, 1]. �

To be able to give a smooth structure on B′′ requires making some choices, like a smooth collar
around N , but the diffeomorphism class of the resulting manifold is independent of such choices.
The idea is that bordisms represent transitions between spaces or spacetimes. For example, a pair
of pants might be understood as two strings scattering into 1 or 1 string splitting into two. Of
course, the smooth structure alone gives us no notion of time on the n manifold, so the pair of
pants is equally a process of 2→ 1, 1→ 2, 0→ 3 and 3→ 0 string scattering.

Figure 4. A pair of pants is a bordism between three circles.

Before moving on, we remark that Cobn is a monoidal category: the disjoint union of (n −
1)−manifolds gives us a type of tensor product on the category. The empty set is the unit of tensor
multiplication.

Definition 3.2. Let H be the category of complex vector spaces. A topological quantum field
theory (TQFT) is a monoidal functor Z : Cobn → H (monoidal means that Z(M

∐
N) ' Z(M)⊗

Z(N)). Z is also required to take M̄ to the dual space of Z(M). �

In other words, Z assigns to each (n − 1)-manifold a vector space Z(M) and to each bordism
B : M → N a linear map Z(B) : Z(M) → Z(N). The monoidal property of Z guarantees that
Z(∅) ' C. Note that if B is a closed n manifold, it can be understood as a bordism ∅ → ∅,
and therefore Z(B) is a linear map C → C, i.e. a number. Because bordisms are defined as
diffeomorphism classes of n-manifolds, B → Z(B) is an invariant. Moreover, since the identity
morphism M → M is given by M × [0, 1] with the natural identification of M with the boundary
components, we have Z(M × [0, 1]) = IdZ(M).

Given any orientation-preserving diffeomorphism M ' N , we can construct the bordism M ×
[0, 1] : M → M by identifying M with M × {0} by the identity and M with M × {1} by the
diffeomorphism M ' N . This gives rise to an automorphism Z(M) → Z(M), so Z(M) furnishes
a natural representation of the group of orientation-preserving diffeomorphisms of M . Actually,
if a diffeomorphism φ is diffeotopic to the identity, then the bordism constructed from φ will be
diffeomorphic to the identity bordism, and therefore the same bordism. On the vector space side,
this means Z(M) descends to a representation of the group of components of Diff(M).
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It is a fact that the vector spaces Z(M) for M are always finite-dimensional. So, we see that the
axioms of an n-dimensional TQFT automatically spit out a lot of interesting information about
smooth manifolds. For n manifolds, we get an invariant, and for (n − 1)-manifolds M , we get a
finite-dimensional representation of the group of components of Diff(M).

We now talk a little bit about the physical interpretation of these axioms. We can think of
objects of Cobn as physical spaces and bordisms as describing time evolution of these spaces (i.e.
bordisms ≈ spacetimes); M × [0, 1], for example, can be though of as the space M propagating
without change from time t = 0 to t = 1. In the absence of this product decomposition, however,
there isn’t a canonical way to assign a global “time” variable to a bordism, especially since we
don’t have any additional structure on manifolds that might help (like, e.g., a Lorentzian metric).
This is what makes TQFTs “topological” in the physics sense: they depend only on the manifold
structure of spacetime and not on any additional structure (e.g. a metric). As for the “quantum”
part of TQFTs: this has to do with the fact that Z(M) is a vector space. The space Z(M) can
be interpreted as the space of quantum states associated to the space and bordisms give operators
which represent the transition amplitude in going from one state to another. As physical theories,
TQFTs are in some sense boring because time evolution is trivial: Z(M × [0, 1]) is the identity on
Z(M).

So far, knots have made no appearance. To remedy this, we need to slightly modify the axioms
of a TQFT. First, specialize to n = 3 and choose a compact simple Lie group G. Instead of
assigning a number just to a closed 3-manifold B, we now wish to assign a number Z(B,L, µi) to
each collection (B,L, µi) where L is a link in B, and µi is a collection of representations of G, one
for each connected component of the link. If B has a boundary, we want to allow only links that
intersect transversely with the boundary (maybe we should call these tangles). So, we modify Cobn
to be the category whose objects are 2-manifolds with any number of special signed points marked
by some representation of G. We define morphisms B : M → N to be the data of a 3-manifold
B, oriented link L, a collection of representations µi for each connected component of L and an
orientation-preserving diffeomorphism ∂B ' M̄

∐
N such that the marked points of M and N are

precisely the ends of connected components of L and the orientation of the points induced by the
orientation on L agrees with signs of those points. Figure 3 gives a picture of the situation we’re
considering with one dimension reduced.

Figure 5. The setup for our refined definition of a TQFT.

Physically, we can think of links as a collection of closed paths of a number of particles. The
reason that we introduce G and the µi is that the particles interact with a gauge field (i.e. a
connection on some G-vector bundle over M) and the nature of the interaction is specified by the
representation of G under which the particle transforms. Classically, a particle belongs to some
representation of group G (in electrodynamics, this is just the charge of the particle), i.e. when a
particle is at a point p, its state is described by an element of the fiber over p of some associated
G-bundle. This state’s time evolution is given by parallel transport with respect to the connection
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on the bundle, and the change in the state of a particle after it travels around a closed loop is
given by the holonomy of the connection around that loop. The trace of the holonomy is a gauge-
invariant quantity, and quantum mechanically, we can ask what the expectation value of the trace
of the holonomy is around such loops. This is precisely what our modified QFT should give us.

We are now in a position to understand, at least from the physics side, some of the reasons
why the phenomena of two-dimensional physics were so closely linked (pun not intended, at first)
to three-dimensional knots. In a TQFT, the information of the n-dimensional physics and the
(n−1)-dimensional physics are very closely related. Indeed, with our modified definition of TQFT,
we are now considering surfaces with some finite number of marked points. This is precisely the
situation that one encounters in conformal field theory or string theory, where one interprets the
marked points as certain string states prepared in the infinite past.

Let us now see how skein relations can arise from a TQFT modified as we have just done. Consider
figure 3. Given a link L on S3, we can isolate any crossing by removing a ball containing only that
crossing. So, we’ve divided S3 into two manifolds: a ball B containing just two strands L′ of the
link and its complement. The two manifolds meet at an S2 with four marked points, two positive
and two negative. Z assigns a vector space to this surface, which we’ll denote H. If we choose
representations µi for the components of L (and letting µi1 and µi2 denote the representations
chosen for the strands of L′ ), then Z(B,L′, µi1 , µi2) should be an element χ of the vector space H
and Z(S3\B,L\L′, µi) is an element ψ of the dual space H∗. Then, by functoriality of Z, we have

(5) Z(S3, L, µi) = ψ(χ).

Now, if the gauge group under consideration is SU(N) and the representations µi are all the
fundamental representation, then in the TQFT Witten constructs, the Hilbert space H is two-
dimensional. This means, in particular, that there is a linear dependence of any three vectors
χ, χ1, χ2 ∈ H. In particular, we can let χ1 be the vector given by a switch in the crossing of L′ and
χ2 be the vector given by undoing the crossing entirely. Gluing the three balls back into S3 gives

Figure 6. A Conway triple from TQFT
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a Conway triple (L,L1, L2). Write the linear dependence as

αχ+ βχ1 + γχ2 = 0

and use the equation 5 to deduce:

(6) αZ(S3, L, µi) + βZ(S3, L1, µi) + γZ(S3, L2, µi) = 0.

This has exactly the flavor of a skein relation! The only thing left to be explained is where the
parameter t of the Jones polynomial appears. To explain this, we mentioned that Witten actually
discovered a family of TQFTs parametrized by an integer k called the level. It is the dependence
of the coefficients α, β, γ on k that gives rise to the polynomial nature of the Jones invariant. For
general G and µi, the TQFT gives other invariants; all will generate skein relations, though the
fact that H was two-dimensional made things very easy.

4. Conclusion

We have seen how a TQFT can be used to generate a lot of interesting invariants of links and
manifolds. The existence of a TQFT like the one we’ve described is far from obvious, however.
We will not endeavor to go through the construction of the Chern-Simons TQFT, since the details
on both the physics and math sides are far from obvious. We will, though, sketch the idea of the
construction from the physics side.

Let G be a compact simple gauge group, as before. Given a compact, oriented 3-manifold M
and a trivial G bundle E → M , we can choose a connection on E, which can be thought of as a
Lie-algebra valued one-form A on M . We construct the Lagrangian, which is a functional of the
one-form A:

(7) LCS =
k

4π

∫
M
Tr(A ∧ dA+

2

3
A ∧A ∧A).

This Lagrangian is invariant only under gauge transformations homotopic to the identity. If we
choose the proper normalization of Tr and integer-valued k, then the action only changes by an
integer multiple of 2π. This is enough to define a gauge invariant quantum theory, since the
quantization procedure cares only about exp(iL). In contrast to the classical theory, where k is a
parameter that doesn’t affect the physics, k affects the quantum physics. Indeed, different values
of k give different values of the invariants discussed above. To obtain the Chern-Simons TQFT, we
quantize the action in equation 7. The invariants Z(M,L, µi) are given by the vacuum expectation
values of products of Wilson line operators in the theory. This is a very rough and very physicsy
sketch. The details of the quantization procedure contain a lot of important information about the
theory. Unfortunately, we can’t go into these details here.

The upshot of this whole story is that physics intuition can lead the way to very interesting new
mathematics. Mathematically, knots are simply embeddings of circles in space. To a physicist, knots
are trajectories of particles. Particles naturally contain internal properties (like charge, for example)
that govern how they interact with a background field, like the electromagnetic field. Properly
keeping track of these extra internal properties gives natural generalizations of knot invariants that
we already know. This is part of a general story about the inseparability of physics and geometry;
both fields are attempts at systematizing intuitions we have about the structure of space and time.
This is a relationship that is likely to continue to yield fruitful results.


